K5InTe4.KCl

1862

Z = 2 $D_x = 3.363 \text{ Mg m}^{-3}$

Data collection Enraf-Nonius CAD-4 1837 observed reflections diffractometer $|I > 3\sigma(D)|$ $R_{\rm int} = 0.026$ ω -2 θ scans Absorption correction: $\theta_{\rm max} = 30^{\circ}$ $h = 0 \rightarrow 15$ empirical (SHELX76; Sheldrick, 1976) $k = -15 \rightarrow 0$ $T_{\min} = 0.425, T_{\max} =$ $l = 0 \rightarrow 11$ 0.732 3 standard reflections 1935 measured reflections monitored every 60 437 independent observed reflections reflections intensity variation: <3%

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.0181	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0227	$\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.912	Extinction correction: none
437 reflections	Atomic scattering factors
27 parameters	from Cromer & Mann
$w = 1.7761[\sigma^2(F)]$	(1968)
$+ 0.00066F^{2}$	2074-0-0 A174-030

Thin plate

Dark red

 $0.28 \times 0.10 \times 0.03 \text{ mm}$

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

		x	у	z	U_{eq}
In	2(b)	1/3	2/3	0.20500	0.0184 (4)
Te(1)	6(c)	0.19953 (2)	2x	0.0985 (2)	0.0212(1)
Te(2)	2(b)	1/3	2/3	0.5505 (2)	0.0343 (4)
K(1)	6(c)	0.1245(1)	2x	0.5186(3)	0.0324 (8)
K(2)	6(c)	0.5209(1)	2x	0.3190 (3)	0.0331 (6)
Cl	2(a)	0	0	0.7768 (5)	0.026(1)

Table 2. Selected geometric parameters (Å, °)

In-Te(1)	× 3	2.752 (1)	K(2)-Te(1)	$\times 2$	3.539 (2)
In-Te(2)		2.768 (2)	K(2)-Te(2)		3.571 (2)
K(1)-Cl		3.110 (3)	K(2)-Te(1)	× 2	3.718 (2)
K(1)-Cl		3.194 (3)	K(2)-Te(2)		4.110(2)
K(1)-Te(1)	× 2	3.472 (2)	Cl-K(1)	× 3	3.110 (3)
K(1)-Te(1)		3.673 (3)	Cl-K(1)	× 3	3.194 (3)
K(1)-Te(2)		4.092 (2)			
Te(1)—In—7	e(1)	110.83 (3)	Te(1)-In-7	Te(2)	108.07 (3)

Statistical tests on intensities were in agreement with a non-centrosymmetric structure and space group $P6_{3}mc$ (No. 186). The structure was solved using Patterson synthesis and refinements were carried out using the *SHELX*76 program (Sheldrick, 1976).

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1081). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321–324.
Eisenmann, B., Hofmann, A. & Zagler, R. (1990). Z. Naturforsch.
Teil B, 45, 8–14.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Zhang, J. H., van Duyneveldt, A. J., Mydosh, J. A. & O'Connor, C. J. (1989). Chem. Mater. 1, 404–406.

Zhang, J. H., Wu, B. & O'Connor, C. J. (1993). Chem. Mater. 5, 17-22.

Acta Cryst. (1994). C50, 1862-1864

A Scandium Fluorocarbonate, Ba₃Sc(CO₃)F₇

NICOLAS MERCIER AND MARC LEBLANC

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 13 April 1994; accepted 24 June 1994)

Abstract

Single crystals of barium scandium fluorocarbonate, Ba₃Sc(CO₃)F₇, were obtained by hydrothermal growth at high temperature and high pressure. The structure, solved from single-crystal X-ray diffraction data, comprises Ba and Sc polyhedra which form connected layers parallel to (001).

Fig. 1. [001] projection of a layer of Sc and Ba polyhedra at $z = \frac{1}{4}$ in Ba₃Sc(CO₃)F₇.

Comment

Several rare earth and 3d transition metal fluorocarbonates have been produced recently by hydrothermal growth (T = 1000 K, P = 200 MPa; Mercier & Leblanc, 1993a,b). Under the same conditions, a mixture of BaCO₃ and ScF₃ led to Ba₃Sc(CO₃)F₇. Ba atoms adopt two types of coordination; Ba1 is located at the centre of a tricapped pseudo-cube, Ba1F₁₁, while Ba2 is surrounded by seven F atoms with two O atoms at greater distances. Each Sc atom occupies the centre of a monocapped triangular prism, ScF₅O₂. All these polyhedra form infinite layers at $z = \frac{1}{4}$ and $z = \frac{3}{4}$ related by the centre of symmetry at (0,0,0) (Fig. 1). Each Sc polyhedron shares vertices along b with one Ba1 and two Ba2 polyhedra; along a, they share F-atom edges with two Ba2 polyhedra. Each ScF₅O₂ polyhedron is also linked to four Ba2 and two Ba1 polyhedra of neighbouring layers. Carbonate groups lie in the ab plane; each shares edges with one Sc polyhedron and two Ba2 polyhedra (Fig. 1).

Experimental

 $Ba_3Sc(CO_3)F_7$ crystals were prepared by hydrothermal growth. A mixture of BaCO₃ and ScF₃ in a 1/1 ratio, inserted in a sealed platinum tube, was heated at 1000 K for 24 h (P = 200 MPa). The sample was then cooled to room temperature at 20 K h⁻¹. The resulting material was extracted with water and washed with acetone. Small colourless crystals of $Ba_3Sc(CO_3)F_7$, obtained as a by-product together with Ba₃Al₂F₉, were present. A parallelepipedic crystal was chosen for X-ray analysis by optical examination and its quality tested with Laue photography.

Crystal data

Ba ₃ Sc(CO ₃)F ₇	Mo $K\alpha$ radiation
$M_r = 649.91$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 34
Стст	reflections
<i>a</i> = 11.519 (3) Å	$\theta = 14.0 - 16.0^{\circ}$
<i>b</i> = 13.456 (3) Å	$\mu = 13.392 \text{ mm}^{-1}$
c = 5.9740 (10) Å	T = 293 (2) K
$V = 926.0 (4) \text{ Å}^3$	Block
Z = 4	$0.2 \times 0.1 \times 0.05 \text{ mm}$
$D_x = 4.662 \text{ Mg m}^{-3}$	Colourless
Data collection	
Stoe Siemens AED four-	$R_{\rm int} = 0.019$
circle diffractometer	$\theta_{\rm max} = 34.93^{\circ}$

 $h = 0 \rightarrow 18$ $\omega/2\theta$ scans $k = 0 \rightarrow 21$ Absorption correction: $l = 0 \rightarrow 9$ Gaussian integration $T_{\min} = 0.36, T_{\max} = 0.56$ 3 standard reflections frequency: 60 min 1271 measured reflections intensity variation: 2% 1110 independent reflections 956 observed reflections

$$[I > 3\sigma(I)]$$

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0248$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0659$	1994)
S = 0.466	Extinction coefficient:
954 reflections	0.0109 (4)
48 parameters	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.1014P)^2]$	from International Tables
+ 64.3346P]	for Crystallography (1992)
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = 0.566$	6.1.1.4)
$\Delta \rho_{\rm max} = 1.483 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -2.932 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Bal	0	0.09440 (3)	1/4	0.00965 (11)
Ba2	0.22319 (2)	0.37986 (2)	1/4	0.01132(11)
Sc	0	-0.26928 (9)	1/4	0.0085 (2)
F1	-0.1610 (3)	0	0	0.0141 (5)
F2	0.6207 (2)	0.7386 (2)	-0.0052 (4)	0.0148 (4)
F3	0	-0.1149 (3)	1/4	0.0167 (9)
01	0	0.4416 (5)	1/4	0.0245 (13)
02	-0.0952 (4)	0.5867 (3)	1/4	0.0256 (10)
С	0	0.5348 (5)	1/4	0.0165 (13)

Table 2. Selected	geometric	parameters ((Å,	0))
-------------------	-----------	--------------	-----	----	---

Bal—Fl	2.699 (2)	Ba2—F2 ^{vu}	2.708 (2)
Ba1—F1 ⁱ	2.699 (2)	Ba2—F2 ^{xi}	2.813 (2)
Ba1—F1"	2.699 (2)	Ba2-F2 ^{xii}	2.813 (2)
Ba1—F1 ⁱⁱⁱ	2.699 (2)	Ba2—O2 ^{xiii}	3.150 (4)
Ba1—F3	2.817 (5)	Ba2—F3 ^x	3.1893 (9)
Ba1-F2 ^{iv}	2.832 (2)	ScF2 ^{xiv}	2.060 (2)
Ba1—F2 ^v	2.832 (2)	Sc—F2 ^{xv}	2.060 (2)
Ba1—F2 ^{vi}	2.832 (2)	Sc—F2 ^{xvi}	2.060 (2)
Ba1—F2 ^{vii}	2.832 (2)	Sc—F2 ^{xvii}	2.060 (2)
Ba1—F3 ^{viii}	2.9998 (7)	Sc—F3	2.077 (5)
Ba1—F3 ⁱⁱⁱ	2.9998 (6)	Sc-O2 ^{xviii}	2.227 (5)
Ba2—F1 ^{ix}	2.574 (2)	Sc—O2 ^{xix}	2.227 (5)
Ba2—F1 ^x	2.574 (2)	01—C	1.254 (9)
Ba201	2.702 (2)	O2—C	1.299 (6)
Ba2—F2 ^v	2.708 (2)	CO2 ^{xiii}	1.300 (6)
01—C—02	122.5 (3)	02—C—O2 ^{xiii}	115.0(7)
01—C—02 ^{xiii}	122.5 (3)		

Symmetry codes: (i) $x, y, \frac{1}{2} - z$; (ii) $-x, -y, \frac{1}{2} + z$; (iii) -x, -y, -z; (iv) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z;$ (v) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} - z;$ (vi) $\frac{1}{2} - x, y - \frac{1}{2}, z;$ (vii) $x - \frac{1}{2}, y - \frac{1}{2}, z;$ (viii) -x, -y, 1 - z; (ix) $\frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z;$ (x) $\frac{1}{2} + x, \frac{1}{2} + y, z;$ (xi) 1 - x, 1 - y, $\frac{1}{2} + z$; (xii) 1 - x, 1 - y, -z; (xiii) -x, y, $\frac{1}{2} - z$; (xiv) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} + z;$ (xv) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z;$ (xvi) $\frac{1}{2} - x, \frac{1}{2} - y, -z;$ $(xvii) x - \frac{1}{2}, \frac{1}{2} - y, -z; (xviii) x, y - 1, z; (xix) - x, y - 1, \frac{1}{2} - z.$

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990), option PATT. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: STRUPLO90 (Fischer, Le Lirzin, Kassner & Rüdinger, 1991).

The authors thank Dr R. Retoux, Université du Maine, for his help in X-ray data collection.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: PA1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Fischer, R. X., Le Lirzin, A., Kassner, D. & Rüdinger, B. (1991). Z. Kristallogr. 3, 75.
- Mercier, N. & Leblanc, M. (1993a). Eur. J. Solid State Inorg. Chem. 30, 195-205.
- Mercier, N. & Leblanc, M. (1993b). Eur. J. Solid State Inorg. Chem. 30, 217–225.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1998a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 1864-1865

A New Rare Earth Fluorocarbonate, Na₂Eu(CO₃)F₃

NICOLAS MERCIER AND MARC LEBLANC

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 13 April 1994; accepted 24 June 1994)

Abstract

The structure of sodium europium fluorocarbonate, $Na_2Eu(CO_3)F_3$, obtained by hydrothermal growth, has been determined by single-crystal X-ray diffraction. The orthorhombic structure comprises EuO_3F_6 polyhedra linked by triangular faces and edges. Infinite EuO_2F_3 sheets in the *ab* plane are connected by the carbonate groups and Na atoms.

Comment

At high temperature (T = 1000 K), the study of the Na₂CO₃-LnF₃ system by hydrothermal growth leads only to Na₃Ln₂(CO₃)₄F phases (Ln = La, Pr) (Mercier & Leblanc, 1993). At lower temperature, a new structure type, Na₂Eu(CO₃)F₃, is found. In the title compound, the cations adopt classical coordination numbers. Atoms Na1 and Na2 occupy the centres of NaO₄F₂ and NaO₂F₄ polyhedra, respectively. Each Eu atom is surrounded by three O atoms and six F atoms which form a tricapped

triangular prism. It must be noted that the valence-bond analysis, as proposed by Brown (1982), is satisfied for all atoms. The EuO₃F₆ polyhedra are connected through the triangular faces formed by the F atoms and form infinite chains along *a*. These chains are linked together by $O \cdots O$ edges in order to build infinite EuF_{6/2}O_{2/2}O sheets in the *ab* plane (Fig. 1). These sheets are shifted one from another along **c** and linked by Na atoms. One O atom of a carbonate group bonds solely to Na atoms. Only Na2 atoms are shown in Fig. 1, at the centre of pseudo-hexagonal cavities.

Fig. 1. Part of the structure of $Na_2Eu(CO_3)F_3$ showing a layer of EuO_3F_6 polyhedra in the *ab* plane.

Experimental

A mixture of Na₂CO₃ and EuF₃ in a 3/1 ratio under hydrothermal conditions (T = 650 K, P = 130 MPa) for 48 h leads to a new phase, Na₂Eu(CO₃)F₃. A parallelepipedic crystal was chosen for X-ray analysis by optical examination and its quality was tested with Laue photography.

Crystal data

Na₂Eu(CO₃)F₃ Mo $K\alpha$ radiation $M_r = 314.94$ $\lambda = 0.71073 \text{ Å}$ Orthorhombic Cell parameters from 38 Pbca reflections a = 6.596 (4) Å $\theta = 15.20 - 15.75^{\circ}$ b = 10.774 (4) Å $\mu = 12.713 \text{ mm}^{-1}$ c = 14.090 (10) ÅT = 293 (2) K $V = 1001.3 (10) \text{ Å}^3$ Block Z = 8 $0.2 \times 0.15 \times 0.15$ mm $D_x = 4.178 \text{ Mg m}^{-3}$ Colourless

Data collection

Stoe Siemens AED fourcircle diffractometer $\omega/2\theta$ scans 1666 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.028$

Acta Crystallographica Section C ISSN 0108-2701 ©1994