$Z=2$
$D_{x}=3.363 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: empirical (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.425, T_{\text {max }}=$ 0.732

1935 measured reflections 437 independent observed reflections

Refinement
Refinement on F
$R=0.0181$
$w R=0.0227$
$S=0.912$
437 reflections
27 parameters
$w=1.7761\left[\sigma^{2}(F)\right.$
$\left.+0.00066 F^{2}\right]$

Thin plate
$0.28 \times 0.10 \times 0.03 \mathrm{~mm}$ Dark red

1837 observed reflections $[I>3 \sigma(I)]$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=30^{\circ}$
$h=0 \rightarrow 15$
$k=-15 \rightarrow 0$
$l=0 \rightarrow 11$
3 standard reflections monitored every 60 reflections intensity variation: $<3 \%$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.58 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.04 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from Cromer \& Mann (1968)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

		x	y	z	$U_{\text {eq }}$
\ln	$2(b)$	$1 / 3$	$2 / 3$	0.20500	$0.0184(4)$
$\mathrm{Te}(1)$	$6(c)$	$0.19953(2)$	$2 x$	$0.0985(2)$	$0.0212(1)$
$\mathrm{Te}(2)$	$2(b)$	$1 / 3$	$2 / 3$	$0.5505(2)$	$0.0343(4)$
$\mathrm{K}(1)$	$6(c)$	$0.1245(1)$	$2 x$	$0.5186(3)$	$0.0324(8)$
$\mathrm{K}(2)$	$6(c)$	$0.5209(1)$	$2 x$	$0.3190(3)$	$0.0331(6)$
Cl	$2(a)$	0	0	$0.7768(5)$	$0.026(1)$

Table 2. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{In}-\mathrm{Te}(1)$	$\times 3$	$2.752(1)$	$\mathrm{K}(2)-\mathrm{Te}(1)$	$\times 2$
$\mathrm{In}-\mathrm{Te}(2)$		$2.768(2)$	$\mathrm{K}(2)-\mathrm{Te}(2)$	
$\mathrm{K}(1)-\mathrm{Cl}$	$3.110(3)$	$\mathrm{K}(2)-\mathrm{Te}(1)$	$\times 2$	$3.539(2)$
$\mathrm{K}(1)-\mathrm{Cl}$		$3.194(3)$	$\mathrm{K}(2)-\mathrm{Te}(2)$	
$\mathrm{K}(1)-\mathrm{Te}(1) \times 2$	$3.7718(2)$			
$\mathrm{K}(1)-\mathrm{Te}(1)$		$3.673(3)$	$\mathrm{Cl}-\mathrm{K}(1)$	$\times 3$
$\mathrm{Cl}-\mathrm{K}(1)$	$\times 3$	$3.110(2)$		
$\mathrm{K}(1)-\mathrm{Te}(2)$	$4.092(2)$			$3.110(3)$
$\mathrm{Te}(1)-\mathrm{In}-\mathrm{Te}(1)$	$110.83(3)$	$\mathrm{Te}(1)-\mathrm{In}-\mathrm{Te}(2)$	$108.07(3)$	

Statistical tests on intensities were in agreement with a non-centrosymmetric structure and space group $P 6_{3} m c$ (No. 186). The structure was solved using Patterson synthesis and refinements were carried out using the SHELXX76 program (Sheldrick, 1976).

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1081). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324. Eisenmann, B., Hofmann, A. \& Zagler, R. (1990). Z. Naturforsch. Teil B, 45, 8-14.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Zhang, J. H., van Duyneveldt, A. J., Mydosh, J. A. \& O'Connor, C. J. (1989). Chem. Mater. 1, $404-406$.

Zhang, J. H., Wu, B. \& O'Connor, C. J. (1993). Chem. Mater. 5, 17-22.

Acta Cryst. (1994). C50, 1862-1864

A Scandium Fluorocarbonate, $\mathbf{B a}_{3} \mathbf{S c}\left(\mathbf{C O}_{3}\right) \mathbf{F}_{7}$

Nicolas Mercier and Marc Leblanc

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 13 April 1994; accepted 24 June 1994)

Abstract

Single crystals of barium scandium fluorocarbonate, $\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$, were obtained by hydrothermal growth at high temperature and high pressure. The structure, solved from single-crystal X-ray diffraction data, comprises Ba and Sc polyhedra which form connected layers parallel to (001).

Fig. 1. [001] projection of a layer of Sc and Ba polyhedra at $z=\frac{1}{4}$ in $\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$.

Comment

Several rare earth and $3 d$ transition metal fluorocarbonates have been produced recently by hydrothermal growth ($T=1000 \mathrm{~K}, P=200 \mathrm{MPa}$; Mercier \& Leblanc, 1993a,b). Under the same conditions, a mixture of BaCO_{3} and ScF_{3} led to $\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$. Ba atoms adopt two types of coordination; Bal is located at the centre of a tricapped pseudo-cube, BalF_{11}, while Ba 2 is surrounded by seven F atoms with two O atoms at greater distances. Each Sc atom occupies the centre of a monocapped triangular prism, $\mathrm{ScF}_{5} \mathrm{O}_{2}$. All these polyhedra form infinite layers at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ related by the centre of symmetry at $(0,0,0)$ (Fig. 1). Each Sc polyhedron shares vertices along b with one Ba 1 and two Ba 2 polyhedra; along a, they share F-atom edges with two Ba 2 polyhedra. Each $\mathrm{ScF}_{5} \mathrm{O}_{2}$ polyhedron is also linked to four Ba 2 and two Ba 1 polyhedra of neighbouring layers. Carbonate groups lie in the $a b$ plane; each shares edges with one Sc polyhedron and two Ba 2 polyhedra (Fig. 1).

Experimental

$\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$ crystals were prepared by hydrothermal growth. A mixture of BaCO_{3} and ScF_{3} in a $1 / 1$ ratio, inserted in a sealed platinum tube, was heated at 1000 K for 24 h ($P=200 \mathrm{MPa}$). The sample was then cooled to room temperature at $20 \mathrm{~K} \mathrm{~h}^{-1}$. The resulting material was extracted with water and washed with acetone. Small colourless crystals of $\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$, obtained as a by-product together with $\mathrm{Ba}_{3} \mathrm{Al}_{2} \mathrm{~F}_{9}$, were present. A parallelepipedic crystal was chosen for X-ray analysis by optical examination and its quality tested with Laue photography.

Crystal data

$\mathrm{Ba}_{3} \mathrm{Sc}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{7}$
$M_{r}=649.91$
Orthorhombic
Cmcm

$$
\begin{aligned}
& a=11.519(3) \AA \\
& b=13.456(3) \AA \AA \\
& c=5.9740(10) \AA \\
& V=926.0(4) \AA^{3} \\
& Z=4 \\
& D_{x}=4.662 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 34 reflections
$\theta=14.0-16.0^{\circ}$
$\mu=13.392 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.2 \times 0.1 \times 0.05 \mathrm{~mm}$
Colourless

Data collection

> Stoe Siemens AED fourcircle diffractometer $\omega / 2 \theta$ scans
> Absorption correction: \quad Gaussian integration $T_{\min }=0.36, T_{\max }=0.56$ 1271 measured reflections 1110 independent reflections 956 observed reflections $\quad[I>3 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0248$
$w R\left(F^{2}\right)=0.0659$
$S=0.466$
954 reflections
48 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1014 P)^{2}\right.$
$+64.3346 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.566$
$\Delta \rho_{\text {max }}=1.483 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=1.483 \mathrm{e} \AA^{-3} \rho_{\text {min }}=-2.932 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1994)

Extinction coefficient: 0.0109 (4)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Bal	0	0.09440 (3)	1/4	0.00965 (11)
Ba 2	0.22319 (2)	0.37986 (2)	1/4	0.01132 (11)
Sc	0	-0.26928 (9)	1/4	0.0085 (2)
F1	-0.1610 (3)	0	0	0.0141 (5)
F2	0.6207 (2)	0.7386 (2)	-0.0052 (4)	0.0148 (4)
F3	0	-0.1149 (3)	1/4	0.0167 (9)
O1	0	0.4416 (5)	1/4	0.0245 (13)
02	-0.0952 (4)	0.5867 (3)	1/4	0.0256 (10)
C	0	0.5348 (5)	1/4	0.0165 (13)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Bal-F1	2.699 (2)	$\mathrm{Ba} 2-\mathrm{F} 2^{\text {vii }}$	2.708 (2)
$\mathrm{Bal}-\mathrm{Fl}{ }^{\text {j }}$	2.699 (2)	$\mathrm{Ba} 2-\mathrm{F} 2^{\text {xi }}$	2.813 (2)
$\mathrm{Bal}-\mathrm{F} 1^{\text {ii }}$	2.699 (2)	$\mathrm{Ba} 2-\mathrm{F} 2^{\text {xii }}$	2.813 (2)
$\mathrm{Bal}-\mathrm{Fl}^{\text {iii }}$	2.699 (2)	$\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {xii] }}$	3.150 (4)
Ba1-F3	2.817 (5)	$\mathrm{Ba} 2-\mathrm{F}^{\text {x }}$	3.1893 (9)
Bal-F2 ${ }^{\text {iv }}$	2.832 (2)	$\mathrm{Sc}-\mathrm{F} 2^{\text {xiv }}$	2.060 (2)
$\mathrm{Ba} 1-\mathrm{F}^{\text {v }}$	2.832 (2)	$\mathrm{Sc}-\mathrm{F}^{\text {xv }}$	2.060 (2)
Bal-F2 ${ }^{\text {vi }}$	2.832 (2)	Sc-F2 ${ }^{\text {xvi }}$	2.060 (2)
$\mathrm{Ba} 1-\mathrm{F}{ }^{\text {vii }}$	2.832 (2)	$\mathrm{Sc}-\mathrm{F} 2^{\text {xvii }}$	2.060 (2)
$\mathrm{Bal}-\mathrm{F} 3{ }^{\text {viii }}$	2.9998 (7)	Sc-F3	2.077 (5)
Bal-F3 ${ }^{\text {iii }}$	2.9998 (6)	$\mathrm{Sc}-\mathrm{O}^{\text {vivii }}$	2.227 (5)
$\mathrm{Ba} 2-\mathrm{F} 1^{\text {ix }}$	2.574 (2)	$\mathrm{Sc}-\mathrm{O2}^{\text {xix }}$	2.227 (5)
$\mathrm{Ba} 2-\mathrm{Fl}{ }^{\text {x }}$	2.574 (2)	$\mathrm{Ol}-\mathrm{C}$	1.254 (9)
$\mathrm{Ba} 2-\mathrm{O} 1$	2.702 (2)	O2-C	1.299 (6)
$\mathrm{Ba} 2-\mathrm{F} 2^{2}$	2.708 (2)	$\mathrm{C}-02^{\text {xiii }}$	1.300 (6)
$\mathrm{O} 1-\mathrm{C}-\mathrm{O} 2$	122.5 (3)	$\mathrm{O} 2-\mathrm{C}-\mathrm{O}^{\text {xiii }}$	115.0 (7)
$\mathrm{O} 1-\mathrm{C}-\mathrm{O}^{\text {xiii }}$	122.5 (3)		

Symmetry codes: (i) $x, y, \frac{1}{2}-z$; (ii) $-x,-y, \frac{1}{2}+z$; (iii) $-x,-y,-z$; (iv) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;(v) x-\frac{1}{2}, y-\frac{1}{2}, \frac{1}{2}-z$; (vi) $\frac{1}{2}-x, y-\frac{1}{2}, z ;$ (vii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (viii) $-x,-y, 1-z$; (ix) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$; (x) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (xi) $1-x, 1-y, \frac{1}{2}+z$; (xii) $1-x, 1-y,-z$; (xiii) $-x, y, \frac{1}{2}-z$; (xiv) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z ;(\mathrm{xv}) x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z ;(\mathrm{xvi}) \frac{1}{2}-x, \frac{1}{2}-y,-z ;$ (xvii) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (xviii) $x, y-1, z ;(\mathrm{xix})-x, y-1, \frac{1}{2}-z$.

Data collection: DIF4 (Stoe \& Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990), option PATT. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: STRUPLO90 (Fischer, Le Lirzin, Kassner \& Rüdinger, 1991).

The authors thank Dr R. Retoux, Université du Maine, for his help in X-ray data collection.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: PA1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Fischer, R. X., Le Lirzin, A., Kassner, D. \& Rüdinger, B. (1991). Z. Kristallogr. 3, 75.
Mercier, N. \& Leblanc, M. (1993a). Eur. J. Solid State Inorg. Chem. 30, 195-205.
Mercier, N. \& Leblanc, M. (1993b). Eur. J. Solid State Inorg. Chem. 30, 217-225.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Stoe \& Cie (1998a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 1864-1865

A New Rare Earth Fluorocarbonate, $\mathrm{Na}_{2} \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$

Nicolas Mercier and Marc Leblanc
Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 13 April 1994; accepted 24 June 1994)

Abstract

The structure of sodium europium fluorocarbonate, $\mathrm{Na}_{2} \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$, obtained by hydrothermal growth, has been determined by single-crystal X-ray diffraction. The orthorhombic structure comprises $\mathrm{EuO}_{3} \mathrm{~F}_{6}$ polyhedra linked by triangular faces and edges. Infinite $\mathrm{EuO}_{2} \mathrm{~F}_{3}$ sheets in the $a b$ plane are connected by the carbonate groups and Na atoms.

Comment

At high temperature ($T=1000 \mathrm{~K}$), the study of the $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{LnF}_{3}$ system by hydrothermal growth leads only to $\mathrm{Na}_{3} \mathrm{Ln}_{2}\left(\mathrm{CO}_{3}\right)_{4} \mathrm{~F}$ phases ($\mathrm{Ln}=\mathrm{La}, \mathrm{Pr}$) (Mercier \& Leblanc, 1993). At lower temperature, a new structure type, $\mathrm{Na}_{2} \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$, is found. In the title compound, the cations adopt classical coordination numbers. Atoms Na 1 and Na 2 occupy the centres of $\mathrm{NaO}_{4} \mathrm{~F}_{2}$ and $\mathrm{NaO}_{2} \mathrm{~F}_{4}$ polyhedra, respectively. Each Eu atom is surrounded by three O atoms and six F atoms which form a tricapped
triangular prism. It must be noted that the valence-bond analysis, as proposed by Brown (1982), is satisfied for all atoms. The $\mathrm{EuO}_{3} \mathrm{~F}_{6}$ polyhedra are connected through the triangular faces formed by the F atoms and form infinite chains along a. These chains are linked together by $\mathrm{O} \cdots \mathrm{O}$ edges in order to build infinite $\mathrm{EuF}_{6 / 2} \mathrm{O}_{2 / 2} \mathrm{O}$ sheets in the $a b$ plane (Fig. 1). These sheets are shifted one from another along \mathbf{c} and linked by Na atoms. One O atom of a carbonate group bonds solely to Na atoms. Only Na2 atoms are shown in Fig. 1, at the centre of pseudo-hexagonal cavities.

Fig. 1. Part of the structure of $\mathrm{Na}_{2} \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$ showing a layer of $\mathrm{EuO}_{3} \mathrm{~F}_{6}$ polyhedra in the $a b$ plane.

Experimental

A mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and EuF_{3} in a $3 / 1$ ratio under hydrothermal conditions ($T=650 \mathrm{~K}, P=130 \mathrm{MPa}$) for 48 h leads to a new phase, $\mathrm{Na} 2 \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$. A parallelepipedic crystal was chosen for X-ray analysis by optical examination and its quality was tested with Laue photography.

Crystal data

$\mathrm{Na}_{2} \mathrm{Eu}\left(\mathrm{CO}_{3}\right) \mathrm{F}_{3}$
$M_{r}=314.94$
Orthorhombic
Pbca
$a=6.596$ (4) \AA
$b=10.774$ (4) \AA
$c=14.090(10) \AA$
$V=1001.3$ (10) \AA^{3}
$Z=8$
$D_{x}=4.178 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Siemens AED fourcircle diffractometer $\omega / 2 \theta$ scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 38 reflections
$\theta=15.20-15.75^{\circ}$
$\mu=12.713 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.2 \times 0.15 \times 0.15 \mathrm{~mm}$
Colourless

1666 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.028$

